Вселенная имеет форму бублика? Новое предположение о форме вселенной Открытая, закрытая или плоская.

Очередную версию строения Вселенной выдвинул физик Франк Штайнер (Frank Steiner) из университета Ульма (Universität Ulm), повторно проанализировав вместе с коллегами данные, собранные космическим зондом Wilkinson Microwave Anisotropy Probe (WMAP), запущенным некогда для детальной съёмки реликтового излучения.

Однако не спешите говорить о краях Вселенной. Дело в том, что многогранник этот замкнут сам на себя, то есть добравшись до одной из его граней, вы просто попадёте обратно внутрь через противоположную сторону этой многомерной «петли Мёбиуса».

Из этого представления следуют любопытные выводы. Например, что полетев на какой-нибудь «сверхскоростной» ракете по прямой, можно в конце концов вернуться к точке старта, или, если взять «очень большой» телескоп, можно увидеть в разных сторонах космоса одни и те же объекты, только в силу конечности скорости света — на разных стадиях жизни.

Такие наблюдения учёные пробовали проводить, но ничего похожего на «зеркальные отражения» найдено не было. Либо потому, что неверна модель, либо потому, что не хватает «дальнобойности» современной наблюдательной астрономии. Тем не менее обсуждение формы и размера Вселенной всё продолжается.

Теперь же новые дровишки в огонь подбросили Штайнер со товарищи.

Planck весит около двух тонн. Он должен курсировать вокруг точки Лагранжа L2. Поворачиваясь вокруг оси, спутник постепенно отснимет полную карту микроволнового фона с невиданной ранее точностью и чувствительностью (иллюстрации ESA/AOES Medialab и ESA/C. Carreau).

Немецкий физик составил несколько моделей Вселенной и проверил, как в них формируются волны плотности микроволнового фона. Он утверждает, что наибольшее совпадение с наблюдающимся реликтовым излучением даёт Вселенная-пончик, и даже посчитал его диаметр. «Пончик» оказался 56 миллиардов световых лет в поперечнике.

Правда, этот тор — не вполне обычный. Учёные называют его 3-тор (3-torus). Его настоящую форму трудно представить, но исследователи объясняют, как хотя бы попытаться это сделать.

Сначала представьте, как формируется обычный «бублик». Вы берёте лист бумаги и сворачиваете его в трубку, склеивая два противоположных края. Затем вы сворачиваете трубку в тор, склеивая два её противоположных «выхода».

С 3-тором — всё тоже самое, за исключением того, что в качестве исходного ингредиента берётся не лист, а куб, а склеивать нужно не края плоскостей, а каждую пару противоположных граней. Причём склеивать таким образом, что покинув куб через одну из его граней, вы обнаружите, что опять попали внутрь через противоположную его грань.

Несколько специалистов, прокомментировавших работу Штайнера, отметили, что она не доказывает окончательно, что Вселенная — это «многомерный бублик», но лишь говорит, что данная форма — одна из наиболее вероятных. Также некоторые учёные добавляют, что додекаэдр (который часто сравнивают с футбольным мячом, хотя это и некорректно) — всё ещё остаётся «хорошим кандидатом».

Франк на это отвечает просто: окончательный выбор между формами можно будет сделать после более точных измерений реликтового излучения, нежели те, что выполнил WMAP. И такая съёмка вскоре будет проведена европейским спутником Planck , который должен стартовать 31 октября 2008 года.

«С точки зрения философии, мне нравится идея, что Вселенная конечна и в один прекрасный день мы могли бы в полной мере изучить её и узнать о ней всё. Но, поскольку вопросы физики не могут быть решены при помощи философии, я надеюсь, что на них ответит Planck», — говорит Штайнер.

> Какая форма у Вселенной?

В какой форме существует Вселенная : исследование бесконечного пространства, карта реликтового излучения WMAP, геометрия Вселенной и предполагаемые формы с фото.

Стоит ли вообще размышлять над тем, какой формы Вселенная? С чем мы имеем дело? Сфера? Конус? Плоская? И как это определить?

Вселенная - это единственное место, в котором мы существуем и за пределы которого не вырваться (потому что их нет). Благодаря физическим законам, природным постоянным и извергающимся тяжелым металлам, нам удалось создать жизнь на небольшом скалистом шаре, затерянном в одной из множества галактик.

Но разве вам не хочется узнать, где вы живете? Просто получить возможность посмотреть на все со стороны, как мы сделали это с родной планетой Землей. Чтобы вы увидели? Бесконечная темнота? Множество пузырьков? Снежный шар? Крысиный лабиринт в руках инопланетян или что-то еще? Какая форма у Вселенной?

Что же, ответ намного проще, но также и страннее. О форме Вселенной начали задумываться еще в древние времена. И люди, в силу нехватки информации, предлагали довольно чудные вещи. В индуистских текстах это было яйцо в форме человека. Греки видели остров, плавающий в пустоте. Аристотель говорит, что Вселенная имеет форму бесконечной сферы или же просто черепахи.

Интересно, что вклад Альберта Эйнштейна помогает проверить каждую из этих моделей. Ученые выдвинули три любимейших формы: положительно-изогнутая, отрицательно-изогнутая и плоская. Мы понимаем, что Вселенная существует в 4-х измерениях и любая из фигур граничит с безумной геометрией Лавкрафта. Поэтому включите максимальное воображение и поехали!

При положительно-изогнутом варианте мы получаем четырехмерную сферу. У этой разновидности есть конец, но не выделяется четкая граница. Если точнее, то две частицы пересекли бы ее, прежде чем вернуться на старт. Вы можете даже протестировать это в домашних условиях. Возьмите воздушный шар и проведите прямую линию, пока она не вернется в начальную точку.

Этот вид вписывается в три измерения и появляется, если в космосе есть огромное количество энергии. Чтобы полностью изогнуться или замкнуться, пространству пришлось бы остановить расширение. Это произойдет, если появится масштабный энергетический запас, способный создать край. Современные данные показывают, что расширение – бесконечный процесс. Так что этот сценарий отпадает.

Отрицательно-изогнутая форма Вселенной – четырехмерное седло. Она открыта, лишена границ в пространстве и времени. Здесь мало энергии, поэтому Вселенная не перестанет расширяться. Если пустить две частицы по ровным линиям, то они никогда не встретятся, а просто будут расходиться, пока не уйдут в разные стороны.

Если критическое количество энергии будет колебаться между крайностями, то спустя бесконечность расширение прекратится. Это плоская Вселенная. Здесь две частицы будут путешествовать параллельно, но никогда не разойдутся и не встретятся.

Легко представить эти три формы, но есть еще множество вариантов. Футбольный мяч напоминает идею со сферической Вселенной. Пончик – технически плоская, но связанная в определенных точках. Некоторые считают, что в пользу этого варианта говорят огромные теплые и прохладные пятна. Можете рассмотреть предполагаемые формы Вселенной на фото.

И вот мы подошли к трубе. Это еще один вид отрицательного искривления. Один ее конец будет зауженный, а второй – широкий. В первой половине все казалось бы узким и существовало в двух измерениях. А в широком можно было бы путешествовать на максимальные расстояния, но возвращаться приходилось бы в обратную сторону (в изгибе меняется направление).

Тогда что? С чем мы имеем дело? Рогалик? Духовой инструмент? Гигантская сырная голова? Ученые все еще не исключили варианты с трубой и седлом.

Ворчуны будут утверждать, что все это бессмысленно и нам никогда не узнать правду. Но давайте не будем столь категоричны. Последние данные Планка показывают, что наша Вселенная… плоская! Бесконечно конечная, совершенно не изогнутая и с точным критическим количеством энергии.

Немыслимо, что мы можем не только узнать, как Вселенная выглядит, но есть и люди, которые постоянно пытаются найти еще больше информации. Если «плоская» кажется вам скучной, то не забывайте, что у нас еще нет достаточной информации. Поэтому вполне вероятно, что все мы можем существовать в гигантском пончике.

Космологи давно предполагали, что Вселенная – бесконечна, но не беспредельна. Это означает, что у нее есть ограниченные размеры, но добраться «до конца мира» - невозможно. Если бы даже нашелся кто-то, кто попытался пересечь Вселенную, он вернулся бы к той точке, с которой начал – подобному тем, кто совершил кругосветное путешествие вокруг Земли.

Давняя гипотеза о конечности Вселенной стала особенно популярна в результате исследования космического микроволнового фона или реликтового излучения, оставшегося во Вселенной после Большого взрыва. Ученые предполагают, что в случае, если Вселенная имела бы неограниченные размеры, в ней можно было бы найти волны всех вероятных длин. Однако все мы знаем, что спектр микроволнового фона очень ограничен – и именно поэтому он так называется.

«Вселенная обладает свойствами музыкального инструмента, – объясняет Френк Штайнер из университета Ульма в Германии. – И длина волн внутри нее не может превосходить длину самого инструмента.

К настоящему времени космологи выдвинули несколько предполагаемых вариантов формы Вселенной. Самыми популярными стали тыква (либо мяч для американского футбола) и бублик, а также три бублика, причудливым образом соединенные друг с другом. Некоторые физики даже предложили красивую модель, по-видимому, позаимствованную из восточной философии – о Вселенной,представляющий собой коридор зеркал с изображениями различных объектов, которые повторяются в небе много раз. Эти «световые портреты» могут отражаться от предполагаемых стенок Вселенной и таким образом многократно дублироваться. Глен Старкман из Университета Кейз Вестерн Резерв в Кливленде (Огайо, США) и его коллеги начали пытаться как-то совместить предложенные модели с экспериментальными данными, но пока еще не выбрали, какая форма подходит нашей Вселенной больше всего.

В то же время, Штайнер и его коллеги начали повторно анализировать данные, полученные в 2003 году с помощью космического аппарата NASA , известного как Микроволновой анизотропный зонд Уилкинсона и попытались использовать и для обоснования их гипотезы о том, что Вселенная имеет форму бублика и трех бубликов. Ученые также хотели проверить распространенную гипотезу о беспредельной и "безразмерной" Вселенной.

Выяснилось, что лучше всего данные космического аппарата обосновывают теорию Вселенной в виде бублика. Ученые также попытались угадать вероятный размер Вселенной – согласно сведениям, полученным с помощью Зонда, он может достичь 56 миллиардов световых лет.

Жан-Пьер Люмине из Парижской обсерватории во Франции придерживается гипотезы о том, что Вселенная имеет форму мяча для американского футбола либо тыквы. Однако ему очень понравилась работа Штайнера.По его мнению, анализ коллеги из Германии показывает, что бублик – вполне вероятная форма Вселенной, но идею о тыкве (футбольном мяче) все-таки не отвергает. «Думаю, что мой футбольный мяч все еще жив и здоров», - шутит Люмине.

Сам Штайнер считает, что более точно определить форму Вселенной позволит исследование реликтового излучения, которые сейчас проводит европейский спутник Planck . Глен Старкман также считает, что данных еще недостаточно. «С философской точки зрения мне нравится идея о том, что Вселенная конечна, - рассуждает он. – Однако физику нельзя поверять философией, и поэтому я остерегусь делать выводы, пока не появятся новые экспериментальные данные».

Изучением геометрии 4-х мерного пространства-времени занимается общая теория относительности Эйнштейна. Однако вопрос о форме (геометрии) самого трехмерного пространства остается невыясненным до сих пор.

Изучая распределение галактик ученые пришли к выводу, что наша Вселенная, с высокой степенью точности, является пространственно однородной и изотропной на больших масштабах. Это означает, что геометрия нашего мира является геометрией однородного и изотропного трехмерного многообразия. Подобных многообразий существует только три: трехмерная плоскость, трехмерная сфера и трехмерный гиперболоид. Первое многообразие соответствует обычному трехмерному евклидовому пространству. Во втором случае, Вселенная имеют форму сферы. Это означает, что мир замкнут, и мы смогли бы попасть в одну и ту же точку пространства просто двигаясь по прямой (как кругосветное путешествие по Земле). Наконец, пространство в форме гиперболоида отвечает открытому трехмерному многообразию, сумма углов треугольника в котором всегда меньше 180 градусов. Таким образом, изучение только крупномасштабной структуры Вселенной не позволяет однозначно определить геометрию трехмерного пространства, но существенно сокращает возможные варианты.

Продвинуться в данном вопросе позволяет исследование реликтового излучения, наиболее точной космологической наблюдаемой на данный момент. Дело в том, что форма трехмерного пространства оказывает существенное влияние на распространение фотонов во Вселенной, - даже небольшая кривизна трехмерного многообразия значительно бы повлияла на спектр реликтового излучения. Современные исследования на эту тему говорят, что геометрия Вселенной с высокой степенью точности плоская. Если пространство и искривлено, то соответствующий радиус кривизны в 10000 больше причинно связанной области во Вселенной.

Вопрос о геометрии трехмерного многообразия тесно связан с эволюцией Вселенной в будущем. Для пространства в форме трехмерного гиперболоида расширение Вселенной длилось бы вечно, тогда как для сферической геометрии расширение сменилось бы сжатием с последующим коллапсом Вселенной обратно в сингулярность. Однако, исходя из современных данных, темп расширения Вселенной сегодня определяется не кривизной трехмерного многообразия, а темной энергией, некой субстанцией с постоянной плотностью. Причем, если плотность темной энергии останется постоянной и впредь, ее вклад в общую плотность Вселенной будет только расти со временем, а вклад кривизны падать. Это означает, что геометрия трехмерного многообразия, по всей видимости, никогда не окажет существенного влияния на эволюцию Вселенной. Разумеется, делать какие-либо достоверные предсказания о свойствах темной энергии в будущем невозможно, и только более точные исследования ее свойств смогут пролить свет на дальнейшую судьбу Вселенной.

В самом начале 2003 года появились первые данные наблюдений реликтового фона, выполненные на космическом зонде WMAP (Wilkinson Microwave Anisotropy Probe). Впервые множество космологических параметров были измерены с необычайно высокой точностью. Но за несколько месяцев первые, самые важные результаты и предсказания были сделаны, восторги поутихли и любопытство ученых переместилось от полученных результатов к проблемам, оставшимся необъясненными.

Наблюдения

Одна из этих проблем - очень низкие амплитуды двух низших мультиполей (сферических гармоник) реликтового фона: квадруполя и октуполя. Эта проблема была известна и ранее, то только в очень точных данных WMAP она встала "во весь рост". На самом деле самой низкой сферической гармоникой является диполь. Он описывает поведение реликта на угловых масштабах равных 180 o: в одном полушарии небесной сферы температура и яркость микроволнового фона оказывается выше, а в другой - ниже. К сожалению эту гармонику невозможно отделить от влияния на фон эффекта Допплера, связанного с движением наблюдателя. Вторая гармоника (квадруполь) описывает распределение флуктуаций температуры реликта на угловых масштабах в 90 o , а третья гармоника (октуполь), соответственно на 60 o (см. Рис. 1). Оказалось, что наблюдаемая амплитуда квадруполя составляет только 1/7 от предсказываемого теорией уровня, а амплитуда октуполя - 72% (см. Рис. 2). Это отклонение слишком велико и его трудно объяснить случайными флуктуациями наблюдаемого микроволнового космического фона. Некоторые исследователи начали предлагать ввести для объяснения этого отклонения "новую физику" (см., например, препринт astro-ph/0306597), другие с ними не соглашались. Пока, однако, никто не предложил какой-либо физический механизм, который привел бы к уменьшению амплитуд двух низших гармоник.


Рис. 2. Спектр мощности угловых распределений флуктуаций реликтового фонового излучения по данным WMAP и некоторых других экспериментов. По вертикали отложена амплитуда флуктуаций, по горизонтали номера гармоник (начиная с l=2) или угловые масштабы. Черные точки - наблюдательные данные, красная линия - предсказания теоретической модели для плоской Вселенной, лучше всего согласующиеся с наблюдениями, серая полоса - допустимая ошибка теоретических предсказаний. Слишком низкие значения двух низших гармоник показаны зеленым цветом.
Низкая амплитуда только одного октуполя (l=3) недостаточно значима, но вместе с очень низким значением второй гармоники они становятся важным наблюдательным фактом.

Топология

Очень легко представить и противоположную ситуацию, когда размеры видимой части Вселенной меньше начальной фигуры. В этом случае наблюдаемая нами картина не будет отличаться от того, что мы бы увидели в бесконечной Вселенной с простой топологией (это отличие может появиться на более поздних - в космологических масштабах - временах).

На самом деле все более сложно. Когда мы наблюдаем другие галактики, то мы смотрим не только в даль, но и в прошлое. Это связано с конечность скорости света. Если бы размер нашей Вселенной составлял несколько мегапарсек, свет от копий нашей Галактики доходил бы к нам за несколько миллионов лет, за это время галактика изменяется не слишком сильно, и мы смогли бы "узнать себя" в этих "отражения", а может быть даже попытались отыскать в них Солнечную систему. Если увеличить размеры начального мира до сотен тысяч световых лет подобное опознание становится затруднительным, а узнать Млечный Путь за 2-3 миллиарда лет до нашей эры мы бы просто не смогли. Однако, все поиски периодической структуры с размерами от 1000 мегапарсек и меньше, которые проводились последние 10-20 лет, не дали положительного результата. Это означает, что если наша Вселенная и имеет ограниченный объем, то его размеры очень велики, если мы и видим самих себя, то в настолько далеком прошлом, что какое-либо отождествление с современными объектами становится практически невозможным.

Космология

Какие предсказания дает додекаэдральная модель Вселенной и как они соотносятся с наблюдениями?

В данной модели пространство должно обладать положительной кривизной (быть замкнутым), причем обладать строго определенным значением отношения средней плотности к критической $\Omega\simeq1.013$ (это значение - математическая константа, которую можно вычислить с любым числом знаков после запятой). И это значение попадает внутрь допустимого диапазона! Данные WMAP дают $\Omega=1.02\pm0.02$.

Как устроена такая Вселенная?

Для космологической модели с $\Omega=1.013$ радиус горизонта будет составлять 38% от радиуса кривизны Вселенной (R ), а границы додекаэдра будут лежать в интервале от 31% R (центры граней) до 39%R (вершины) от его центра. Объем такого многогранника будет составлять 83% от объема сферы горизонта. Отношение размеров додекаэдра к радиусу кривизны остается постоянным, поскольку при расширении Вселенной эти величины изменяются пропорционально друг другу. Горизонт Вселенной ведет себя по-другому. Его поведение зависит от закона расширения, более подробно это описано в (и ссылках приведенных в ней).

Пятна на небе

Сложная топология нашей Вселенной будет проявляться в наблюдения только в том случае, если размеры горизонта превосходят размеры исходного многогранника и в доступную нам область Вселенной хотя бы частично попадают участки его копий. Если же исходная фигура превосходит по размерам горизонт, но наблюдаемая картина не будет отличаться от вида бесконечной Вселенной. Схематически данное утверждение показано на Рис. 12.

Для указанного выше размера горизонта (0.38R ) наличие копий Вселенной будет проявляться в виде шести пар расположенных в противоположных направлениях на небесной сфере кругов диаметром 70 o . Они образуются при пересечении сферы последнего рассеяния с гранями додекаэдра. Сфера последнего рассеяния (граница рекомбинации) по данным WMAP расположена на среднем красном смещении z=1089$\pm$1, т.е. слегка меньше горизонта. Температура реликтового излучения в каждом из кругов такой пары будет одинаковым образом отличаться от среднего ее значения, т.к. регистрируемое от кругов излучение испускается областями Вселенной, заполненных одним и тем же веществом (см. Рис. 13).

Теоретические аспекты

То, что наша Вселенная может оказаться замкнутой, ставит определенные вопросы перед , который сегодня успешно объясняет большинство свойств окружающей нас Вселенной. Полной ясности в этой проблеме (инфляция в замкнутой Вселенной) пока нет, но, кажется, космологи готовы к ее решению.

Заключение

Как подтвердить или опровергнуть модель, описанную в данной статье? Она предсказывает два следствия, которые допускают экспериментальную проверку, причем в ближайшее время:

  1. Вселенная должна быть замкнутой с $\Omega=1.013$;
  2. На небе должны наблюдаться 6 пар кругов диаметром 70 o (центры которых соответствуют серединам граней правильного додекаэдра) распределение возмущений реликтового излучения в которых должно попарно кореллировать друг с другом.
Первый аргумент является гораздо более весомым, чем второй. Указанные круги уже искали и пока они не обнаружены (см. astro-ph/0310233), но это еще не конец данной истории. А вот если наблюдения покажут, что $\Omega\neq1.013$, то о двенадцатигранной Вселенной придется забыть. Такие данные можно ожидать от продолжающего свою миссию WMAP или от строящегося аппарата следующего поколения для исследователя космического микроволнового фронта - спутника Planck .

И, конечно, остается возможность, что для приведенных в начале данной статьи фактов найдутся совсем другие объяснения. (Этого вполне можно ожидать, так как указаний в пользу именно такой топологически сложной модели Вселенной очень мало. Пока ими являются только низкие амплитуды двух первых гармоник спектра мощности реликтового излучения. Этого достаточно, чтобы начать обсуждать данную модель, но чтобы убедить научную общественность в ее "серьезности" нужны дополнительные аргументы.)

М. Е. Прохоров ГАИШ, Москва

Комментарии (12):

Хорошая статья.

Есть над чем подумать.

Вот в начале раздела

Топология

упоминается конструкция бесконечного Евклидово пространство с конечным обЪёмом. С такими конструкциями надо обращаться оч. аккуратно.

Именно при таких допущениях возникают софистические эффекты, заводящие мысль в тупик. В этой схеме в завуалированной форме применяется такая мат. абстракция как Нуль_пространство (напомню Нуль_пространство есть пространство без протяжённости и времени).

Лет эдак 30, а то и все 50 назад все научные и около научные журналы в той или иной форме обЪигрывали свойства сей мат.субстанции. А уж фантасты... так практически применяли её под названиями "Нуль_скачёк","Нуль_переход"...

Как вдруг оказалось что у этой субстанции есть одно , но крайне неприятное свойство:

"Возникнув" где-нить в соседстве_контакте с более_менее реальной консистенцией

Нуль_пространство неизменно начинает поглащать эту консистенцию и, поглотив её, самоуничтожается.

Сегодня даже фантасты от неё отказались, заменив её на чевоточины или кротовы норы.

Вселенная может иметь форму не какого-нибудь там шара или додекаэдра, а... рожка или горна. Точнее говоря весь наш космос оказывается вытянут в этакую длинную трубку, с узким концом с одной стороны и "раструбом" с другой. Такая "конструкция" нашей Вселенной кроме всего прочего подразумевает, что она конечна, а в каких-то ее местах встречаются области, где можно увидеть собственный затылок. Возможно, для "здравомыслящих" людей все это прозвучит как полный бред или мечта сюрреалиста, однако выкладки математика Франка Штайнера (Frank Steiner) из германского Университета Ульма (Universität Ulm) и его коллег основаны на авторитетных экспериментальных данных, полученных в 2003 году все тем же знаменитым зондом WMAP (NASA"s Wilkinson Microwave Anisotropy Probe).

Новая диковинная модель призвана объяснить два загадочных обстоятельства, так озадачивающих астрофизиков: во-первых, необычный характер распределения "горячих" и "холодных" пятен в космическом микроволновом излучении, а во-вторых, "глушение" сигнала при больших масштабах (обнаружено отсутствие каких-либо ясно выраженных "горячих" или "холодных" участков при углах свыше примерно 60 градусов). Текущий объем Вселенной по Штайнеру составляет около 10 32 кубических световых лет. Когда же Вселенной было только 380 тысяч лет, то она была столь мала, что в ней просто не могли возникнуть достаточно большие флуктуации.

В новой модели, определяемой так называемой топологией Пикара (Picard topology), Вселенная изогнута весьма прихотливым образом. Один ее конец бесконечно удлинен, но зато столь сужен, что имеет в результате конечный объем. С другой стороны "раструб" резко расширяется, однако отнюдь не бесконечно, и если бы мы летели к "вспухшему" концу на космическом корабле, то в некоторый момент вернулись бы обратно с другой стороны "дудки" (см. верхний рисунок). Эмиль Пикар (1856-1941) - это французский математик, занимавшийся исследованием дифференциальных уравнений, особых точек, асимптотических решений, теорией функций и пр.,кстати говоря, он иностранный член-корреспондент Петербургской академии наук (1895), и иностранный почетный член АН СССР (1925).

Имеющая форму "рога" модель были предложена еще в 1990-х годах, чтобы правильно описать аномалии, которые выявились при анализе данных спутника COBE (Cosmic Background Explorer - Исследователь космического фона) - предшественника WMAP, однако группа Штайнера первая показала, что эта идея соответствует и данным WMAP тоже. В 2003 году уже выдвигалась другая модель, призванная соответствовать результатам WMAP, и согласно ей Вселенная также оказывалась конечной, однако форма мира была иная (додекаэдр, в прессе ошибочно именовавшийся "футбольным мячом"). Другие варианты возможной формы Вселенной - "пончик" (тороидальная форма) или же сплюснутая сфера (предложенная несколько месяцев назад учеными из американского штата Пенсильвания).

Классическое представление о физическом пространстве наделяет его таким фундаментальным топологическим свойством как связность. Физическое пространство - суть трехмерное связное многообразие - объединяется с временем в единое четырехмерное пространство-время. Если теперь рассмотреть модель связного, но не односвязного пространства-времени, то вполне можно обнаружить несвязные трехмерные пространственно-подобные сечения. Более того, несвязное сечение $M_1$ может получиться из связного $M_0$ с помощью сферической перестройки, и, следовательно, связное и несвязное сечения можно рассматривать как начальное и конечное состояния некоторого геометродинамического процесса (лоренцев кобордизм). В ходе этого процесса 3-геометрия претерпевает переход через некоторое критическое состояние $M_{1/2}$, которое отвечает нарушению связности пространственно-подобного сечения.

Было бы интересно выяснить, при каких условиях происходит нарушение связности пространственно-подобных сечений, или, если оставить в стороне конкретную дифференциально-топологическую модель, выяснить - возможно ли, что в ходе некоторого физического процесса трехмерное простран- ство $M_0$ становится несвязным. Допуская вольность в словах, можно сказать, что нарушение связности означает отрывание области $D_0$ от $M_0.$

По сути это популярная статья по топологии Вселенной. Люмине известен как автор нашумевшей статьи, в которой данные по реликтовому излучению интерпретировались в рамках модели в нетривиальной топологией. В данном обзоре рассказано о том, как такие модели выглядят, как их можно проверять по имеющимся данным и тп.

Современное состояние Вселенной еще очень плохо изучено. Однако, вероятно уже существует ответ на вопрос: Какова современная форма вселенной? Многолетние наблюдения показали, что Вселенная обладает рядом физических свойств, которые резко сокращают число возможных претендентов на ее форму.

И одно из главных таких свойств топологии Вселенной - ее кривизна. Согласно принятой на сегодняшний день концепции, примерно через 300 тысяч лет после Большого взрыва температура Вселенной упала до уровня, достаточного для объединения электронов и протонов в первые атомы.

Когда это произошло, излучение, которое вначале рассеивалось заряженными частицами, внезапно получило возможность беспрепятственно проходить через расширяющуюся Вселенную. Это известное ныне как космическое микроволновое фоновое, или реликтовое, излучение удивительно однородно и обнаруживает только очень слабые отклонения (флуктуации) интенсивности от среднего значения. Такая однородность может быть только во Вселенной, кривизна которой всюду постоянна.

Постоянство кривизны означает, что пространство Вселенной имеет одну из трех возможных геометрий: плоскую евклидову сферическую с положительной кривизной или гиперболическую с отрицательной.

Немецкий математик Карл Фридрих Гаусс еще в первой половине XIX задался целью ответить на вопрос: искривляются ли траектории световых лучей, проходящих над сферическим пространством Земли? Оказалось, что в малых (по астрономическим меркам) масштабах Вселенная предстает, как евклидова. Недавние исследования, проведенные с помощью высотных аэростатов, поднятых над Антарктидой, также подтверждают этот вывод.

При измерении углового спектра мощности реликтового излучения был зарегистрирован пик, который, как полагают исследователи, может быть объяснен только существованием холодной черной материи - относительно больших, медленно движущихся объектов - именно в евклидовой Вселенной. То есть, ученые довольно уверенно говорят о том, что пространство нашей Вселенной должно удовлетворительно описываться геометрией Евклида, как трехмерное пространство очень малой кривизны.

“Из общей теории относительности вытекает новое представление о Вселенной, новая космология. Эйнштейн рассматривал гравитационные поля различных тел как искривления пространства-времени в областях, окружающих эти тела…возьмем четырехмерное пространство-время, т.е. совокупность мировых линий всех тел природы. Эти мировые линии сильнее искривляются вблизи центров тяготения. Но не обладают ли они в целом некоторой общей кривизной?...

Эйнштейн предположил, что искривлено только пространство, а время не искривлено. Поэтому, отправившись из данного географического пункта по кратчайшему пути в путешествие по Вселенной, мы опишем замкнутую пространственную траекторию и вернемся в тот же пункт в иное время, скажем в триллионном году н. э. Значит мировое пространство конечно (в том же смысле, в котором конечно двумерное пространство-поверхность нашей Земли), а время бесконечно. Мы можем найти по аналогии двумерное пространство - поверхность, кривую и конечную в одном измерении, но прямую и бесконечную в другом измерении, такова поверхность цилиндра.

Если мы проведем (по кратчайшему пути) линию вокруг цилиндра бесконечной длины, мы вернемся в ту же точку. Если мы проведем черту вдоль цилиндра, она будет прямой и бесконечной. Исходя из этой аналогии гипотеза Эйнштейна об искривленном мировом пространстве и неискривлённом времени была названа гипотезой цилиндрического мира.

В 1922 г. А.А. Фридман высказал предположение о том, что кривизна мирового пространства меняется с течением времени. По – видимому, Вселенная расширяется”.

Что означает утверждение о трехмерности пространства? Как возникли современные представления о размерности пространства в физике и математике? Какую роль играет трехмерность пространства в фундаментальных законах физики? Этим вопросам посвящена книга. Рассматривается роль понятия размерности в физике микро- и мегамира, соотношение различных подходов к понятию размерности, взаимосвязь физики и геометрии. Вместе с историей создания современных представлений о размерности пространства рассказывается о творчестве замечательных ученых - физиков и математиков: А. Эйнштейна, П. Эренфеста, А. Пуанкаре, П. С. Урысона и других.

Важной проблемой современной дифференциальной геометрии является построение и исследование примеров конкретных пространств с заданными геометрическими свойствами. Одной из подобных задач является поиск римановых многообразий с заданной группой голономии и изучение их топологических свойств. Зная группу голономии многообразия, можно многое сказать о его кривизне - основной характеристике римановых многообразий; с другой стороны, исследование голономии является технически более простой задачей.

Хотя константа тонкой структуры была введена немецким физиком-теоретиком Арнольдом Зоммерфельдом (Arnold Sommerfeld) еще в 1916 году, на вопрос о том, является ли она действительно постоянной, окончательного ответа нет и сегодня. "Судя по результатам наших измерений, нет, не является!" - говорит австралийский физик Джон Уэбб (John Webb), профессор Университета Нового Южного Уэльса в Сиднее. Еще десять лет назад руководимая им группа ученых проанализировала с помощью американского телескопа Кек (Keck Telescope) на Гаваях те изменения, которые претерпевает свет далеких квазаров при прохождении сквозь межгалактические газопылевые облака, и обнаружила, что спектры поглощения несколько отличаются от предсказанных. Этот феномен мог иметь лишь одно объяснение: несколько миллиардов лет назад значение константы тонкой структуры было чуть-чуть меньшим, чем сегодня.

Исследование на границе топологии и квантовой механики предполагает существование совершенно новой формы материи.
Еще в 1970 году молодой советский физик сделал необычное предположение. Виталий Ефимов, который в настоящее время работает в Университете штата Вашингтон (США), показал, что квантовые объекты, которые не могут образовывать между собой пары, могут формировать тройки.
В 2006 году группа австралийских ученых обнаружила первый пример этого так называемого «состояния Ефимова» в холодном газе, состоящем из атомов цезия.
На первый взгляд это может показаться нелогичным. Ведь связи, удерживающие вместе тройку объектов, точно такие же, как и в паре. Но на самом деле это не так, между ними существует тонкое, но важное различие.

Для вывода формул можно пользоваться окружением "$$" и \TeX разметкой.